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AERODYNAMIC FORCES AM) MOMENTS ON A LARGE OGIVE-CYLINDEZ 

STORE: AT VARIOUS LOCATIONS BELOW TRE FUSELAGE CENTER 

LINE OF A SWEPT-WING BOMBER CONFIGURATION 

AT A MACH NUMBER OF 1.61 

By Ode11 A. Morris 

A supersonic wind-tunnel investigation on s to re  interference has 
been conducted i n  the Langley 4- by &-foot supersonic pressure tunnel 
at a Mach number of 1.61. 
ogive-cylinder s tore  i n  the  presence of a 45' swept-wing-fuselage bomber 
configuration f o r  a number of s to re  locations below the  fuselage center 
l ine .  

Forces and moments w e r e  measured on a large 

Results of the  investigation show that large variations of s to re  
lift, drag, and p i t ch  occur with changes i n  s tore  or a i rplane angle of 
a t tack,  s tore  v e r t i c a l  location, and s tore  horizontal  location. The 
var ia t ion of t he  s tore  forces and moments with respect t o  the  chordwise 
locat ion of the  wing plan form indicates that the wing i s  a large fac tor  
i n  producing the interference loads on the  s tore .  Comparison of data  
f o r  underfuselage and underwing s tore  locations at  an angle of a t t ack  
of Oo showed maximum s to re  drag interferences of similar magnitudes, 
but showed considerably smaller m a x i m u m  interference on s to re  lift an 
pi tching moments f o r  underfuselage store locations.  

INTRODUCTION 

A t  transonic and supersonic speeds, research on external s tores  
and nacelles has shown that interference from t h e  various a i r c r a f t  com- 
ponents may lead t o  large performance penal t ies .  In  recognition of the  
need f o r  addi t ional  data on s tores ,  a detai led investigation of s to re  
interference at supersonic speeds has been made i n  the  Langley 4- by 
4 - f O O t  supersonic pressure tunnel. (See refs. 1 t o  3 . )  
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References 1 and 2 present r e su l t s  of t e s t s  made on a 4 5 O  swept- 
wing bomber configuration with a large ogive-cylinder s tore  f o r  a large 
number of underwing s tore  locations.  The present invest igat ion supple- 
ments the data of references 1 and 2 with addi t ional  tests made f o r  a 
number of s tore  horizontal  and v e r t i c a l  locations below the  fuselage 
center l i n e  of a geometrically similar 4 5 O  swept-wing-fuselage combina- 
t ion .  The aerodynamic charac te r i s t ics  of t he ’ s to re ,  without pylon, were 
measured f o r  a range of angle of a t tack  between +,80 a t  a Mach number 
of 1.61. The r e su l t s  of these t e s t s  a r e  presented herein and a re  com- 
pared with the  underwing s tore  data of references 1 and 2. Suff ic ient  
data were obtained t o  permit presentation i n  contour map form. 
the contour p lo ts ,  calculation of the  store-release charac te r i s t ic ,  as 
outlined i n  reference 4, may be made f o r  the underfuselage conditions. 
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SYMBOLS 

1” 

Drag - 
SF 

drag coeff ic ient  of s tore  (uncorrected f o r  base drag),  

L i f t  l i f t  coeff ic ient  of s tore ,  - 
SF 

pitching-moment coeff ic ient  of s tore ,  about s to re  nose, 
Pitching moment 

SF 2 

length of s tore ,  13.1 i n .  

l b  dynamic pressure, - 
sq ft 

maximum f ron ta l  area of  s tore ,  0.0147 sq f t  

s to re  diameter, 1.64 in .  

horizontal  ( streamwise) distance between s tore  midpoint and 
fuselage nose (See f i g .  1.) 

chordwise location of s tore  midpoint, measured from leading 
edge of wing center-l ine chord, i n .  

wing center-l ine chord, 10 .O7 in .  

mean aerodynamic chord, 7.18 in .  

wing span, 26.18 in .  
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Y spanwise location of store center l ine,  measured from fuselage 
center l ine,  in.  

z ver t i ca l  distance between s to re  midpoint and fuselage center 
l i n e  at  ??-inch nt.at.inn, i_?. 

h'  ve r t i ca l  distance between s to re  midpoint and fuselage sur- 
face, in. 

% angle of attack of s tore  measured w i t h  respect t o  f ree  air- 
stream, deg 

awf angle of a t tack of wing-fuselage combination measured w i t h  
respect t o  free airstream, deg 

APPARATUS AND TESTS 

"he pr incipal  dimensions of the models and the general arrangement 
of the test setup are shown i n  figure 1. 
s tore  combination was designed t o  simulate a heavy-bomber airplane with 
a large external s tore .  
t o  that used i n  references 1 and 2. 

The 45O swept-wing-fuselage- 

This configuration was geometrically similar 

The w i n g  and fuselage were constructed of s t e e l  and were s t ing  
mounted i n  the Langley 4- by 4-foot supersonic pressure tunnel w i t h  
the wings i n  a ve r t i ca l  plane. 
t o  be traversed i n  the X and Z axes and pitched through an angle-of- 
a t tack range. The ogive-cylinder store w a s  constructed of aluminum 
and w a s  mounted on a six-component strain-gage balance with 3 separate 
support strut which was cantilevered from the tunnel side w a l l  as shown 
i n  figure 1. 
figure 1, tests were made with s tore  angles of 00, +bo, and t 8 O ,  except 
where it was physically impossible. Tests were made f o r  four different  
chordwise locations by manually adjusting the length of the wing-fuselage 
s t ing  during shutdown between runs. Reference 4 describes i n  d e t a i l  the  
test  technique and gives 8 discussion of the  problems encountered. 
variation of the  s tore  a t t i t ude  due to  aerodynamic deflection under 
load is  small (about the same order of magnitude as the variations shown 
i n  ref. 1) and no corrections have been applied t o  the nominal s tore  
angles. 
a l/k-inch-wide s t r i p  of no. 60 carborundum grains and shellac w a s  located 
on both surfaces of the wing a t  the  10-percent-chord l i n e  and on the  
fuselage and s tore  nose 1/2 inch from the t i p .  

This support system allowed the model 

For each of the s tore  positions shown on the  grid of 

The 

I n  order t o  insure a turbulen t  boundary layer fo r  a l l  t e s t s ,  
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ACCUR!ICY OF DATA 

An estimate of the  r e l a t ive  accuracy i n  the  present data which w a s  
determined from an inspection of repeat test points and s ta t ic -ca l ibra t ion  
deflections is  as follows: 

Wing-fuselage : 

Store : 

+f, deg . . . . . . . . . . . . . . . . . . . . . . . . . . .  

x, in .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.03 
z, in.  . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.10 

CLS to.02 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to .01 
cDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.02 
cmS 

+0.10 - 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  as,  deg tO.10 

RESULTS AND DISCUSSION 

The l i f t ,  drag, and pitching-moment coeff ic ients  f o r  the  isolated 
These s to re  are presented i n  f igure 2 f o r  angles of a t tack  up t o  sl”. 

resu l t s  a r e  i n  excellent agreement with the  isolated-store data of 
reference 1, which w e r e  obtained using a d i f fe ren t  model and balance. 
The basic data f o r  the  s tore  tes ted  i n  the  presence of t he  4 5 O  swept- 
wing-fuselage combination are shown i n  f igures  3 t o  5 .  
( f i g .  3) ,  lift ( f i g .  b ) ,  and pitching-moment coeff ic ients  ( f i g .  5) are 
presented plot ted against  the  s tore  v e r t i c a l  location z f o r  several  
horizontal locations 
of t he  wing-fuselage configuration and s tore .  
were computed about the  nose of the  s tore  and a l l  drag data are uncor- 
rected f o r  base pressure. 

2 

Store drag 

x and fo r  various combinations of angle of a t tack 
The pitching moments 

The data of f igure 6 show the  e f fec ts  of s tore  horizontal  locat ion 
on store l i f t ,  drag, and pitching-moment coeff ic ients  f o r  three s tore  
ver t ica l  locations. 
basic  d a t a  f o r  equal angles of a t tack  on the  wing-fuselage-store combi- 
nation and at equal s tore  vert , ical  heights (referenced t o  the  fuselage 
center l i ne )  f o r  each horizontal  location. 

These f igures  were obtained from cross p lo t s  of t he  

Although t h i s  s tore  i s  somewhat large f o r  locations under the  fuse- 
lage, the data f o r  small v e r t i c a l  heights give an indication of the  mag- 
nitudes and trends of the  interferences encountered fo r  fuselage-mounted 
s tores .  The e f fec ts  of a support pylon on the  aerodynamic characteris-  
t i c s  of the  s tore  have not been determined; however, with proper design 
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it' seem improbable that i t s  interference would s igni f icant ly  alter 
these results. 
l i f t ,  drag, and pitching-moment coefficients occurs with changes i n  
s to re  horizontal  location, s tore  angle of a t tack,  and s tore  v e r t i c a l  
height, par t icu lar ly  f o r  4" an6 sc t c r g l t !  UT &Luck. PGT all c x f f i -  
c ients ,  the var ia t ion of the interference i s  of considerably l e s s  mag- 
nitude a t  
i n  character from the curves a t  4 O  and 8' angle of a t tack.  
f i g .  6(a).)  
the  pressure f i e l d  analysis of reference 1 indicates that the low lift 
and d r a g  and the high pitching moments shown a t  bo and 8O angles of 
a t tack  f o r  forward s tore  posi t ion are a r e su l t  of the  presence of t he  
s to re  afterbody i n  a strong posit ive pressure region originating from 
the  wing. Conversely, the  high forces and negative moments f o r  t he  
rearward s tore  locations a re  a result of the  same region of flow act ing 
on the  s to re  nose. 
wing pressure f i e l d  is considerably less ;  consequently, interference of 
t he  fuselage pressure f i e l d  on the wing pressure f i e l d  more nearly 
compensates each other resul t ing i n  curves of a d i f fe ren t  nature with 
smaller chordwise var ia t ions.  

The data of figure 6 show that la rge  var ia t ion of s tore  

a = Oo, and the  curves f o r  t h e  Oo case a re  qui te  d i f fe ren t  

An examination of the  flow f i e l d  i n  a manner similar t o  
(See 

A t  an angle of a t tack of Oo, the  in tens i ty  of the  

When the  s tore  v e r t i c a l  height h '  w a s  increased from 1.12 t o  3.08, 
the  magnitudes of s to re  lift, drag, and pitching-mment coeff ic ients  
changed but, i n  general, showed chordwise var ia t ions of a similar nature 
( f i g s .  6(b) and 6 ( c ) ) .  

Spanwise Contour Plots  

Figures 7 t o  9 present spanwise contour p l o t s  of s to re  drag, lift, 
and pitching-moment coeff ic ients  which u t i l i z e  s tore  data from the  present 
t e s t s  f o r  the  full-span bomber configuration and from references 1 and 2 
f o r  t h e  semispan bomber configuration. For these p lo ts ,  t he  point a t  
which the  value of s to re  coefficient i s  p lo t ted  i s  the  s to re  midpoint 
and t h e  intersect ion of the  gr id  l ines  represents ac tua l  s tore  test  points.  
The s t o r e  v e r t i c a l  heights compared f o r  the  two d i f fe ren t  tests a re  ref- 
erenced from the  s to re  midpoint t o  the wing or  fuselage surface. (See 
sketch i n  each f igure.)  Although the contour f a i r i n g  between the  under- 

w i n g  s to re  locations (-& = 0.25) and the  fuselage-center-line s to re  

locations = 0 is  s t r i c t l y  arbi t rary,  the  figures are in te res t ing  

insofar  as showing trends and f o r  comparing the  magnitudes of t he  coef- 
f i c i e n t s  fo r  the two d i f fe ren t  tests. 

(bI2 ) 

The drag data of f igure 7(a) show t h a t  maximm s tore  drag occurs 
f o r  inboard underwing s tore  positiol;ls. 
ing the  s tore  ve r t i ca l  height t o  

Figure 7(b) showed that increas- 
h- = 1.24 caused the  maximum drag of d 
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t he  s tore  t o  occur f o r  s tore  locations along the  fuselage center l i n e  
near the wing t r a i l i n g  edge; however, t he  maximum drag coeff ic ients  were 
essent ia l ly  independent of spanwise locations.  The drag f o r  fuselage 
s to re  locations forward and rearward of t he  wing plan form tends t o  
decrease toward or  below the  i so la ted  s t o r e  drag i n  the  same fashion 
as shown f o r  underwing locations.  
show that the maximum s tore  l i f t  and pitching-moment coeff ic ients  f o r  
s tores  located below the  fuselage center l i n e  a t  both v e r t i c a l  heights 
are considerably smaller than the maximum coeff ic ients  obtained f o r  
underwing s to re  locations.  
t he  lift and pitching-moment coeff ic ients  tend t o  decrease toward o r  
below the isolated s to re  values f o r  s t o r e  locations below the  fuselage 
center l i n e  forward and rearward of t h e  wing plan form. Hence, t he  
underfuselage contour data show trends s i m i l a r  t o  those previously shown 
f o r  underwing s to re  locations, and thus indicate  that the  wing i s  a 
large factor  i n  the productions of the  interferences on the  s to re  f o r  
s to re  locations below the  fuselage center l i ne .  However, the  maximum 
interference values of l i f t  and p i t ch  f o r  the underfuselage s to re  loca- 
t ions  are  smaller and fa r ther  rearward, evidently due t o  the  f a c t  that 
the s tore  i s  ac tua l ly  a considerably grea te r  distance from the  w i n g .  

The contour p l o t s  of figures 8 and 9 

Also as w a s  noted f o r  s to re  drag coefficients,  

Vert ical  Contour P lo ts  

Vertical  contour p lo t s  f o r  s tore  drag, l i f t ,  and pitching moments 
are presented i n  f igures  10 t o  12 f o r  the wing-fuselage angle of a t tack  
of 40 with various s to re  angles of a t tack  up t o  +,8O. Similar p lo t s  f o r  
any of the angles tes ted  can be made from the  basic  data ( f i g s .  3 t o  5 ) .  
For these f igures  a lso,  the  point a t  which the  value of the  s to re  coef- 
f i c i e n t  is p lo t ted  i s  the s tore  midpoint. A s  shown i n  the  figures,  z 
i s  t h e  ve r t i ca l  distance between the  fuselage center l i n e  a t  s t a t ion  22 
and the  s tore  midpoint. 

I n  general, t he  ccntour p lo t s  show rapid var ia t ions of t he  s t o r e  
forces and moments with x and z .  Data i n  t h i s  form may be used 
d i r ec t ly  i n  determining the store-release charac te r i s t ics  by calculat ing 
the  drop path as outlined i n  reference 4. 
t ra jec tory  of the  s to re  following release m y  be calculated by a step- 
w i s e  process. 

By using t h i s  method, t h e  

CONCLUDING REMARKS 

Forces and moments have been measured a t  a Mach number of 1.61 on 
a s tore  i n  the  presence of a 4 5 O  swept-wing-fuselage bomber configura- 
t i o n  fo r  a number of s to re  locatLons below the  fuselage center l i ne .  
Results o f  t h e  investigations show t h a t  large var ia t ions of s to re  l i f t ,  
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drag, and pitching-moment coefficients OCCUT with changes i n  s tore  o r  
airplane angle of attack and with changes i n  s tore  ve r t i ca l  and hori- 
zontal locations. "he variation of the s tore  forces and moments with 
respect t o  the  chordwise location of the wing plan form indicates t ha t  
ihe wing is  a large factor  i n  proriucing tne interference ioaas on tne 
s tore .  Comparison of data f o r  underfuselage and underwing s tore  loca- 
t ions  at  an angle of a t tack of Oo showed maximum drag interferences of 
similar magnitudes, but showed considerably smaller maximum interference 
on s tore  l i f t  and pitching moments for  underfuselage s tore  locations. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va. ,  September 4, 1956. 
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Figure 2.- Aerodynamic characteristics of the isolated store. 
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(a) h' = 1.12 inches. 

Figure 6 .- Variation of store lift, drag, and pitching-moment coefficient 
with store horizontal position in presence of wing-fuselage combina- 
tion; = 
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